Connecting STEM Research and Learning Communities of the 21st Century: Exploring Models of Collaborative Outreach

William J. Frascella

Director

Division of Elementary, Secondary & Informal Education

National Science Foundation

Connecting STEM Research and Learning Communities of the 21st Century

- As an Idea Problem: Transform and Transfer Content of STEM Research into Appropriate Educational Settings
- As a Tools Problem: Develop Instructional Materials and Infrastructure to Support Transformed Content
- As a People Problem: Develop a Corps of Teachers Qualified to Deliver Instruction of Transformed Content

Collaboration: Essential Yet Elusive

- Addressing These Problems Requires the Collaboration of a Wide Range of Expertise from Science and Education
- Requires Understanding the Institutional Settings of Both These Communities
- Both Communities Are Undergoing Changes as Institutions

The Challenge of Collaboration : the Emotional Pre-Requisites

Robust Sense of Self-Interest Being Served

Mutual Respect

Trust

Powerful Institutional Transformations of The Learning Community and STEM Research Workforce

Stovepipe Structures are Weakening as Networks are Emerging

Purposes and Policies Driving Changes in Both Communities: Urging Partnerships

- Insuring Future Capacity of the Research Workforce
- **Economic Competitiveness and General Workforce Issues**
- **Greater Access to STEM-Related Jobs**
- Need for Societal Support for Big Science
- Criteria of the National Science Board

The Learning Communities of the 21st Century as a Network

Some U.S. PreK-12 Statistics

- 16,850 School Districts
- **80,000 Schools**
- **3** million Teachers (FTE)
- **46** million Students (K-12)

21St Century Learning Communities U.S. Elementary (K-5)

- **52,000 Schools**
- 1.4 million Teachers
- **22** million Students

21St Century Learning Communities Secondary (~6 - 12)

- **29,000 Schools**
- 1,230,000 Teachers
- 120,000 Science Teachers
- **23,000,000 Students**

Informal Education

Museums (all types)	<u>16,000</u>	
■ History	25%	(4,016)
■ Art	23%	(3,680)
■ Historic Home/Site	12%	(1,872)
■ Natural History/Anthro	4%	<i>(</i> 672 <i>)</i>
■ Science Centers	4%	(608)
■ Children's/Youth	3%	<i>(560)</i>
Zoos and Aquaria	3%	(496)
■ Others		

Science-rich Informal Institutions: Some Comparisons

■~ 2000 institutions

Science Centers, Planetariums, Zoos, Aquaria, Natural History Museums, Children Museums, Nature Centers, Arboretums and Botanical Gardens

25.8 million schoolchildren served annually

About 40% of all U.S. Children

21St Century Learning Communities Other Network Nodes

- Home Schooling
 - 1,900,000 students
- Charter Schools (in 37 states and the DC)
 - 1,993 schools **** 17,477 teachers
- Before/After School Program
 - **■** 6,000,000 students

21St Century Learning Communities Issues Driving Change and Policy

■ Over 28 Million School-Age Children
Have Both Parents in the Workforce

Over 5 Million School-Age Children are Left Alone Each Week

Networks of Connections: Model of the Learning Community

- **Boundaries Becoming Blurred as New Connections Established**
- Dealing With a Network with Nodes and Connections
- Informal Education (esp. Science Centers) Can Play a Leadership (Hub) Role in this Network

The STEM Research Workforce of the 21st Century as a Network

STEM Research Workforce: Two Dimensions of Emerging Diversity

Horizontal Diversity

- Interdisciplinary Research Agendas
 Becoming Common
- Science and Engineering Boundary Blurred
- Collaborations among University, Business, and Government Driving This Diversity

STEM Workforce: Two Dimensions of Emerging Diversity Research

Vertical Diversity

- Rapid Progress in Cyberinfrastructure and Internet Networking Responsible for Another Dimension of Diversity
- Pursuing a Research Agenda Involves Workers With Wide Variety of Skills and Education
- A Globally Distributed Workforce Can Pursue a Single Research Agenda
- This Change is Transforming the Workplace of Research

Networks of Connections

- Both Education and Science Are Emerging as **Networks of Connections**
- Stovepipe Structures Are Dissolving in Both **Networks**
- Policies, Interacting with a Variety of Purposes (from Business, Government, University, and STEM Disciplinary Agendas) are Driving The **Development of These Networks**
- Research is Critical to Understand These Connections; and a
- Rich Understanding of These Connections Is Crucial to the Research and Development of **Outreach Structures to Connect These Networks** 19

The Grid Environment and a Unique Opportunity for Collaboration

- The Climate for Science and Science Education Collaborating Has Never Been Better
- Each Side Will Set a High Priority on Solving Learning and Communication Problems
- Self Interest of Scientists and Science Educators Can Drive an Effective Collaboration

The Enabling Power of a Grid Environment and a Model of Collaborative Outreach: E-Laboratory

- An E-Science Laboratory as a Vehicle for Outreach
- **E-Laboratory Can Provide Rich Access to** the Process as Well as Ideas of STEM Research
- **Engagement with Science of a Wide Range of Students**

